Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123816, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198991

RESUMO

S-adenosyl-L-methionine (SAM) is an abundant biomolecule used by methyltransferases to regulate a wide range of essential cellular processes such as gene expression, cell signaling, protein functions, and metabolism. Despite considerable effort, there remain many specificity challenges associated with designing small molecule inhibitors for methyltransferases, most of which exhibit off-target effects. Interestingly, NMR evidence suggests that SAM undergoes conformeric exchange between several states when free in solution. Infrared spectroscopy can detect different conformers of molecules if present in appreciable populations. When SAM is noncovalently bound within enzyme active sites, the nature and the number of different conformations of the molecule are likely to be altered from when it is free in solution. If there are unique structures or different numbers of conformers between different methyltransferase active sites, solution-state information may provide promising structural leads to increase inhibitor specificity for a particular methyltransferase. Toward this goal, frequencies measured in SAM's infrared spectra must be assigned to the motions of specific atoms via isotope incorporation at discrete positions. The incorporation of isotopes into SAM's structure can be accomplished via an established enzymatic synthesis using isotopically labeled precursors. However, published protocols produced an intense and highly variable IR signal which overlapped with many of the signals from SAM rendering comparison between isotopes challenging. We observed this intense absorption to be from co-purifying salts and the SAM counterion, producing a strong, broad signal at 1100 cm-1. Here, we report a revised SAM purification protocol that mitigates the contaminating salts and present the first IR spectra of isotopically labeled CD3-SAM. These results provide a foundation for isotopic labeling experiments of SAM that will define which atoms participate in individual molecular vibrations, as a means to detect specific molecular conformations.


Assuntos
Metionina , S-Adenosilmetionina , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Sais , Metiltransferases/química , Metiltransferases/metabolismo , Racemetionina , Isótopos
2.
J Phys Chem Lett ; 14(18): 4313-4321, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37130045

RESUMO

The level of interest in probing the strength of noncovalent interactions in DNA duplexes is high, as these weak forces dictate the range of suprastructures the double helix adopts under different conditions, in turn directly impacting the biological functions and industrial applications of duplexes that require making and breaking them to access the genetic code. However, few experimental tools can measure these weak forces embedded within large biological suprastructures in the native solution environment. Here, we develop experimental methods for detecting the presence of a single noncovalent interaction [a hydrogen bond (H-bond)] within a large DNA duplex in solution and measure its formation enthalpy (ΔHf). We report that introduction of a H-bond into the TC2═O group from the noncanonical nucleobase 2-aminopurine produces an expected decrease ∼10 ± 0.76 cm-1 (from ∼1720 cm-1 in Watson-Crick to ∼1710 cm-1 in 2-aminopurine), which correlates with an enthalpy of ∼0.93 ± 0.066 kcal/mol for this interaction.


Assuntos
2-Aminopurina , DNA , Temperatura , Conformação de Ácido Nucleico , Ligação de Hidrogênio , Termodinâmica , DNA/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...